Note: We need an author for this blog. Willing people contact Us......

Friday, 3 October 2014

Singularity Functions



Singularity Functions

  Singularity functions are also called switching functions. These are very useful in circuit analysis. They are very help use in neat and compact description of some circuit phenomena especially step response of RC and RL circuits…………………
 
“Singularity functions are function that either are discontinues or have discontinues derivatives.”

Three mostly used singularity functions are:

1.     Unit step Functions          u(t)
2.     Unit impulse functions    d(t)
3.     Unit ramp function           r(t)

Unit step functions        u(t)

The Unit step function u(t) is 0 for negative value of t and u(t) is 1 for positive value of t
Mathematical form is:
                                                 0,         t<0
                                 u(t) = 
                                                  1,         t>0                            

As at t=0 there is an abrupt change in the function
So unit step function is un defined at t=0                                                                        t
          Unit step function is dimensionless

 

 

Delay of Unit step Function:

If the Abrupt change occurs at t=to Instead of  t=0 then we can say that unit step function is delay by to seconds.
Then we replace every t by (t - to) and unit step function become:
                                                     0,            t < t0
                                 u(t – t0) = 
                                                     1,            t > t0                                         


                                                                                                 

Advance of unit step function:

If the Abrupt change in input occurs at t=-to Instead of  t=0 then we can say that unit step function is Advance by to seconds
Then we replace every t by (t + to) and unit step function become:
                                                      0,       t <- t0
                                 u(t + t0) = 
                                                      1,       t >- t0                                              

Applications of Step Function:                                                                    

 We use the step function to represent an Abrupt change in voltage or current and this phenomena is used in Computers and Control Systems
For example:   the voltage

                                                 0,         t< t0
                                 V(t) = 
                                                 V0,         t>t0

Where t0  may be any value for which we want to on the switch
we may express V(t) in this term……….
                                    V(t)=V0 u(t –t0)
           
                                                 0,         t< t0
V(t)=   V0                                            
                                                 1,         t>t0

When t0=0 then                      V(t)=V0 u(t)

Unit impulse Function   d(t)


“The derivate of unit step function is known as delta Function”
It is also known as delta function d(t)
                                     0,                                    t<0                                

d(t) =             Undefined                        t=0

                                       0,                                      t>0

1.      Unit impulse function is zero whenever except at t=0  where it is undefined
2.      Unit impulse function is like an ideal source ( it is not physically realizable)
3.      It is very useful tool in mathematics
4.      It may be visualized as a very short duration pulse of unit area
Mathematically: when we take integration from-0 to +0

Where t=-0 is time just before t=0 and t=+0 is time just after the t=0
In this 1 is not magnitude it denoting unit area
The unit is known as the strength of the impulse function
We an impulse function has area other then unity, then area of
Impulse equal to is strength.
For example:
                 10d(t)

          


 For impulse function  10 d(t)  it has area 10    

                                                                 Strength of impulse function
Unit impulse function can not apply practically because it is an impulse for undefined time
     may be for 109  second 
A impulse may be in positive cycle and may be in negative cycle       (like for impulse  -4d(t-3) )
                                             







Unit Ramp Functions r(t)

                  Integration of unit step function is called Unit ramp function

Or                                                                                     
                   0,          t≤0
r(t)=                                                                         
                   t,           t≥0
                                                                                 
“The unit ramp function is zero for negative values of t and has a unit slope for positive values of t”
In general, a ramp is a function which is changing at a constant rate.

for more information you download this pdf file
    
https://drive.google.com/file/d/0B8WnAMWZn9bUZmNQelZpbFo2TnM/view?usp=sharing
………………………………………………………………………………………………………………………………………………………………
Thank you

No comments:

Post a Comment

Contact us

Name

Email *

Message *